Files
farmer-was-replaced/maze.py

258 lines
6.0 KiB
Python

import utils
from __builtins__ import *
spawn_dirs = []
spawn_index = [0]
spawned_branches = []
treasure_found = [0]
gold_start = [0]
def pop_spawn_dir():
if spawn_index[0] >= len(spawn_dirs):
return None
direction = spawn_dirs[spawn_index[0]]
spawn_index[0] = spawn_index[0] + 1
return direction
def is_spawned_at(vx, vy, direction):
for i in range(len(spawned_branches)):
entry = spawned_branches[i]
if entry[0] == vx and entry[1] == vy and entry[2] == direction:
return True
return False
# Plant a full maze.
#
# Parameters:
# dimensions (tuple): The dimensions of the maze. If not set, default to the maximum size.
def place(dimensions=None):
if dimensions == None:
dimensions = get_world_size()
plant(Entities.Bush)
substance = dimensions * 2**(num_unlocked(Unlocks.Mazes) - 1)
use_item(Items.Weird_Substance, substance)
def solve(dimensions=None):
if dimensions == None:
dimensions = get_world_size()
treasure_found[0] = 0
gold_start[0] = num_items(Items.Gold)
spawn_index[0] = len(spawn_dirs)
grid_size = get_world_size()
directions = [North, East, South, West]
def next_pos(x, y, direction):
if direction == North:
return x, (y + 1) % grid_size
if direction == South:
return x, (y - 1) % grid_size
if direction == East:
return (x + 1) % grid_size, y
return (x - 1) % grid_size, y
def direction_between(x, y, nx, ny):
if (x + 1) % grid_size == nx and y == ny:
return East
if (x - 1) % grid_size == nx and y == ny:
return West
if x == nx and (y + 1) % grid_size == ny:
return North
return South
visited = []
x = get_pos_x()
y = get_pos_y()
visited.append([x, y])
def is_visited(vx, vy):
for i in range(len(visited)):
if visited[i][0] == vx and visited[i][1] == vy:
return True
return False
stack = [[x, y, 0]]
while len(stack) > 0:
if treasure_found[0] or num_items(Items.Gold) > gold_start[0]:
treasure_found[0] = 1
return
current = stack[-1]
x = current[0]
y = current[1]
next_dir_index = current[2]
if get_entity_type() == Entities.Treasure and can_harvest():
harvest()
treasure_found[0] = 1
return
candidates = []
for i in range(len(directions)):
direction = directions[i]
if can_move(direction):
next_xy = next_pos(x, y, direction)
nx = next_xy[0]
ny = next_xy[1]
if not is_visited(nx, ny):
candidates.append(direction)
if len(candidates) > 1 and num_drones() < max_drones():
for i in range(1, len(candidates)):
candidate = candidates[i]
if not is_spawned_at(x, y, candidate):
spawned_branches.append([x, y, candidate])
spawn_dirs.append(candidate)
spawn_drone(maze_worker)
next_xy = next_pos(x, y, candidate)
visited.append([next_xy[0], next_xy[1]])
break
moved = False
while next_dir_index < len(directions):
direction = directions[next_dir_index]
stack[-1][2] = next_dir_index + 1
if can_move(direction):
next_xy = next_pos(x, y, direction)
nx = next_xy[0]
ny = next_xy[1]
if not is_visited(nx, ny):
move(direction)
visited.append([nx, ny])
stack.append([nx, ny, 0])
moved = True
break
next_dir_index = stack[-1][2]
if moved:
continue
if len(stack) == 1:
return
prev = stack[-2]
prev_x = prev[0]
prev_y = prev[1]
back_dir = direction_between(x, y, prev_x, prev_y)
move(back_dir)
stack.pop()
def maze_worker():
start_x = get_pos_x()
start_y = get_pos_y()
grid_size = get_world_size()
directions = [North, East, South, West]
def next_pos(x, y, direction):
if direction == North:
return x, (y + 1) % grid_size
if direction == South:
return x, (y - 1) % grid_size
if direction == East:
return (x + 1) % grid_size, y
return (x - 1) % grid_size, y
def direction_between(x, y, nx, ny):
if (x + 1) % grid_size == nx and y == ny:
return East
if (x - 1) % grid_size == nx and y == ny:
return West
if x == nx and (y + 1) % grid_size == ny:
return North
return South
visited = []
visited.append([start_x, start_y])
def is_visited(vx, vy):
for i in range(len(visited)):
if visited[i][0] == vx and visited[i][1] == vy:
return True
return False
first_dir = pop_spawn_dir()
if not first_dir:
return
if not can_move(first_dir):
return
next_xy = next_pos(start_x, start_y, first_dir)
move(first_dir)
visited.append([next_xy[0], next_xy[1]])
stack = [[next_xy[0], next_xy[1], 0]]
while len(stack) > 0:
if treasure_found[0] or num_items(Items.Gold) > gold_start[0]:
treasure_found[0] = 1
return
current = stack[-1]
x = current[0]
y = current[1]
next_dir_index = current[2]
if get_entity_type() == Entities.Treasure and can_harvest():
harvest()
treasure_found[0] = 1
return
candidates = []
for i in range(len(directions)):
direction = directions[i]
if can_move(direction):
next_xy = next_pos(x, y, direction)
nx = next_xy[0]
ny = next_xy[1]
if not is_visited(nx, ny):
candidates.append(direction)
if len(candidates) > 1 and num_drones() < max_drones():
for i in range(1, len(candidates)):
candidate = candidates[i]
if not is_spawned_at(x, y, candidate):
spawned_branches.append([x, y, candidate])
spawn_dirs.append(candidate)
spawn_drone(maze_worker)
next_xy = next_pos(x, y, candidate)
visited.append([next_xy[0], next_xy[1]])
break
moved = False
while next_dir_index < len(directions):
direction = directions[next_dir_index]
stack[-1][2] = next_dir_index + 1
if can_move(direction):
next_xy = next_pos(x, y, direction)
nx = next_xy[0]
ny = next_xy[1]
if not is_visited(nx, ny):
move(direction)
visited.append([nx, ny])
stack.append([nx, ny, 0])
moved = True
break
next_dir_index = stack[-1][2]
if moved:
continue
prev_x = start_x
prev_y = start_y
if len(stack) > 1:
prev = stack[-2]
prev_x = prev[0]
prev_y = prev[1]
back_dir = direction_between(x, y, prev_x, prev_y)
move(back_dir)
stack.pop()
if len(stack) == 0:
if get_pos_x() == start_x and get_pos_y() == start_y:
return