Compare commits
6 Commits
4e774109ef
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
| 2a8811d185 | |||
| 3eadbfed90 | |||
| 6e6d7f43c0 | |||
| 677f84b856 | |||
| 5b18a3224b | |||
| 83b0032c23 |
208
cactus.py
208
cactus.py
@@ -6,17 +6,17 @@ import utils
|
||||
# Returns:
|
||||
# Tuple
|
||||
def compute_cost(width, height):
|
||||
cost = get_cost(Unlocks.Cactus)
|
||||
seeds = width * height
|
||||
cost = get_cost(Unlocks.Cactus)
|
||||
seeds = width * height
|
||||
|
||||
for item in cost:
|
||||
if item == Items.Cactus:
|
||||
cost[item] = seeds * cost[item]
|
||||
for item in cost:
|
||||
if item == Items.Cactus:
|
||||
cost[item] = seeds * cost[item]
|
||||
|
||||
return cost
|
||||
return cost
|
||||
|
||||
def place(width, height):
|
||||
utils.plant_grid(width, height, [Entities.Cactus], 0.0, True)
|
||||
utils.plant_grid(width, height, [Entities.Cactus], 0.0, True)
|
||||
|
||||
# Harvests all cacti in the specified area.
|
||||
#
|
||||
@@ -31,116 +31,116 @@ def place(width, height):
|
||||
# width (int): The number of columns in the grid.
|
||||
# height (int): The number of rows in the grid.
|
||||
def sort_and_harvest(width, height):
|
||||
x = get_pos_x()
|
||||
y = get_pos_y()
|
||||
# first sort all by row, and in this loop we keep tally of the sum of all cacti in each row
|
||||
for row in range(height):
|
||||
_sort_row_bubble(width)
|
||||
if row < height - 1:
|
||||
move(North)
|
||||
y += 1
|
||||
utils.move_to(x, y)
|
||||
x = get_pos_x()
|
||||
y = get_pos_y()
|
||||
# first sort all by row, and in this loop we keep tally of the sum of all cacti in each row
|
||||
for row in range(height):
|
||||
_sort_row_bubble(width)
|
||||
if row < height - 1:
|
||||
move(North)
|
||||
y += 1
|
||||
utils.move_to(x, y)
|
||||
|
||||
y -= (height - 1)
|
||||
utils.move_to(x, y)
|
||||
y -= (height - 1)
|
||||
utils.move_to(x, y)
|
||||
|
||||
|
||||
# now sort each row by column to account for north/south, but we don't need to keep track of the sum of each column
|
||||
for col in range(width):
|
||||
_sort_column_bubble(height)
|
||||
if col < width - 1:
|
||||
move(East)
|
||||
x += 1
|
||||
utils.move_to(x, y)
|
||||
# now sort each row by column to account for north/south, but we don't need to keep track of the sum of each column
|
||||
for col in range(width):
|
||||
_sort_column_bubble(height)
|
||||
if col < width - 1:
|
||||
move(East)
|
||||
x += 1
|
||||
utils.move_to(x, y)
|
||||
|
||||
move(West)
|
||||
move(West)
|
||||
|
||||
|
||||
# we should be fully sorted! so just harvest...
|
||||
harvest()
|
||||
# we should be fully sorted! so just harvest...
|
||||
harvest()
|
||||
|
||||
|
||||
# Sort a row of cacti based on size. Implement bubble sort.
|
||||
#
|
||||
# Parameters:
|
||||
# width (int): The number of columns in the grid.
|
||||
# Sort a row of cacti based on size. Implement bubble sort.
|
||||
#
|
||||
# Parameters:
|
||||
# width (int): The number of columns in the grid.
|
||||
def _sort_row_bubble(width):
|
||||
start_index = 0
|
||||
end_index = width - 1
|
||||
swapped = True
|
||||
start_index = 0
|
||||
end_index = width - 1
|
||||
swapped = True
|
||||
|
||||
while start_index < end_index and swapped:
|
||||
swapped = False
|
||||
|
||||
# Forward pass (East): Bubble the largest item to the right (end_index)
|
||||
# We travel from start_index to end_index
|
||||
for _ in range(end_index - start_index):
|
||||
if measure(East) < measure():
|
||||
swap(East)
|
||||
swapped = True
|
||||
move(East)
|
||||
|
||||
# The rightmost element is now sorted
|
||||
end_index -= 1
|
||||
while start_index < end_index and swapped:
|
||||
swapped = False
|
||||
|
||||
# Forward pass (East): Bubble the largest item to the right (end_index)
|
||||
# We travel from start_index to end_index
|
||||
for _ in range(end_index - start_index):
|
||||
if measure(East) < measure():
|
||||
swap(East)
|
||||
swapped = True
|
||||
move(East)
|
||||
|
||||
# The rightmost element is now sorted
|
||||
end_index -= 1
|
||||
|
||||
if not swapped:
|
||||
break
|
||||
|
||||
swapped = False
|
||||
|
||||
# Backward pass (West): Bubble the smallest item to the left (start_index)
|
||||
# We travel from end_index back to start_index
|
||||
# FIXED: Added +1 to range to ensure we reach start_index
|
||||
for _ in range(end_index - start_index + 1):
|
||||
if measure(West) > measure():
|
||||
swap(West)
|
||||
swapped = True
|
||||
move(West)
|
||||
|
||||
# The leftmost element is now sorted
|
||||
start_index += 1
|
||||
|
||||
# Move to the start of the new window
|
||||
# We are currently at (start_index - 1), so move East once to get to start_index
|
||||
if start_index < end_index:
|
||||
move(East)
|
||||
if not swapped:
|
||||
break
|
||||
|
||||
swapped = False
|
||||
|
||||
# Backward pass (West): Bubble the smallest item to the left (start_index)
|
||||
# We travel from end_index back to start_index
|
||||
# FIXED: Added +1 to range to ensure we reach start_index
|
||||
for _ in range(end_index - start_index + 1):
|
||||
if measure(West) > measure():
|
||||
swap(West)
|
||||
swapped = True
|
||||
move(West)
|
||||
|
||||
# The leftmost element is now sorted
|
||||
start_index += 1
|
||||
|
||||
# Move to the start of the new window
|
||||
# We are currently at (start_index - 1), so move East once to get to start_index
|
||||
if start_index < end_index:
|
||||
move(East)
|
||||
|
||||
|
||||
# Sort a column of cacti based on size. Implement bubble sort.
|
||||
#
|
||||
# Parameters:
|
||||
# height (int): The number of rows in the grid.
|
||||
# Sort a column of cacti based on size. Implement bubble sort.
|
||||
#
|
||||
# Parameters:
|
||||
# height (int): The number of rows in the grid.
|
||||
def _sort_column_bubble(height):
|
||||
start_index = 0
|
||||
end_index = height - 1
|
||||
swapped = True
|
||||
start_index = 0
|
||||
end_index = height - 1
|
||||
swapped = True
|
||||
|
||||
while start_index < end_index and swapped:
|
||||
swapped = False
|
||||
|
||||
# Forward pass (North): Bubble the largest item to the top (end_index)
|
||||
for _ in range(end_index - start_index):
|
||||
if measure(North) < measure():
|
||||
swap(North)
|
||||
swapped = True
|
||||
move(North)
|
||||
|
||||
end_index -= 1
|
||||
while start_index < end_index and swapped:
|
||||
swapped = False
|
||||
|
||||
# Forward pass (North): Bubble the largest item to the top (end_index)
|
||||
for _ in range(end_index - start_index):
|
||||
if measure(North) < measure():
|
||||
swap(North)
|
||||
swapped = True
|
||||
move(North)
|
||||
|
||||
end_index -= 1
|
||||
|
||||
if not swapped:
|
||||
break
|
||||
|
||||
swapped = False
|
||||
|
||||
# Backward pass (South): Bubble the smallest item to the bottom (start_index)
|
||||
# FIXED: Added +1 to range to ensure we reach start_index
|
||||
for _ in range(end_index - start_index + 1):
|
||||
if measure(South) > measure():
|
||||
swap(South)
|
||||
swapped = True
|
||||
move(South)
|
||||
|
||||
start_index += 1
|
||||
|
||||
if start_index < end_index:
|
||||
move(North)
|
||||
if not swapped:
|
||||
break
|
||||
|
||||
swapped = False
|
||||
|
||||
# Backward pass (South): Bubble the smallest item to the bottom (start_index)
|
||||
# FIXED: Added +1 to range to ensure we reach start_index
|
||||
for _ in range(end_index - start_index + 1):
|
||||
if measure(South) > measure():
|
||||
swap(South)
|
||||
swapped = True
|
||||
move(South)
|
||||
|
||||
start_index += 1
|
||||
|
||||
if start_index < end_index:
|
||||
move(North)
|
||||
|
||||
40
main.py
40
main.py
@@ -1,5 +1,6 @@
|
||||
import cactus
|
||||
import utils
|
||||
import maze
|
||||
import pumpkins
|
||||
import sunflowers
|
||||
from __builtins__ import *
|
||||
@@ -12,8 +13,8 @@ def plant_carrots(width, height):
|
||||
def plant_grass(width, height):
|
||||
utils.plant_grid(width, height, [Entities.Grass], 0.75, False)
|
||||
|
||||
def plant_alternating(width, height, plantWith):
|
||||
utils.plant_grid(width, height, plantWith, 0.75, False)
|
||||
def plant_alternating(width, height, plantWith, fn = None):
|
||||
utils.plant_grid(width, height, plantWith, 0.75, False, fn)
|
||||
|
||||
# Entire grid utils:
|
||||
# These are utilities to plant & harvest the entire grid with specific plants.
|
||||
@@ -38,6 +39,16 @@ def entire_grid_trees_and_grass():
|
||||
utils.move_to(0, 0)
|
||||
plant_alternating(world_size, world_size, [ Entities.Tree, Entities.Grass ])
|
||||
|
||||
def entire_grid_trees_and_grass_fertilizer():
|
||||
world_size = get_world_size()
|
||||
utils.move_to(0, 0)
|
||||
|
||||
def on_plant(x, y):
|
||||
use_item(Items.Fertilizer)
|
||||
|
||||
plant_alternating(world_size, world_size, [ Entities.Tree, Entities.Grass ], on_plant)
|
||||
|
||||
|
||||
def entire_grid_cactus():
|
||||
world_size = get_world_size()
|
||||
utils.move_to(0, 0)
|
||||
@@ -76,12 +87,21 @@ if __name__ == "__main__":
|
||||
while num_items(Items.Pumpkin) < 500000:
|
||||
entire_grid_pumpkins()
|
||||
|
||||
for i in range(10):
|
||||
entire_grid_trees_and_grass()
|
||||
utils.move_to(0, 0)
|
||||
|
||||
entire_grid_carrots()
|
||||
entire_grid_carrots()
|
||||
entire_grid_pumpkins()
|
||||
maze.place(utils.world_size)
|
||||
maze.solve(utils.world_size)
|
||||
|
||||
|
||||
# entire_grid_trees_and_grass_fertilizer()
|
||||
# utils.harvest_grid(get_world_size(), get_world_size())
|
||||
|
||||
# for i in range(10):
|
||||
# entire_grid_trees_and_grass()
|
||||
|
||||
# entire_grid_carrots()
|
||||
# entire_grid_carrots()
|
||||
# entire_grid_pumpkins()
|
||||
|
||||
while True:
|
||||
worldSize = get_world_size()
|
||||
@@ -91,11 +111,11 @@ if __name__ == "__main__":
|
||||
|
||||
# only run this if our total power is below 5k.
|
||||
# why? because the rest doesn't use over 5k power.
|
||||
while num_items(Items.Power) < 5000:
|
||||
while num_items(Items.Power) < 50000:
|
||||
utils.move_to(0, 0)
|
||||
grid = sunflowers.place(sectionSize, sectionSize)
|
||||
grid = sunflowers.place(worldSize, worldSize)
|
||||
utils.move_to(0, 0)
|
||||
sunflowers.harvest_grid(sectionSize, sectionSize, grid)
|
||||
sunflowers.harvest_grid(grid)
|
||||
|
||||
utils.move_to(0, 0)
|
||||
cactus.place(sectionSize, sectionSize)
|
||||
|
||||
257
maze.py
Normal file
257
maze.py
Normal file
@@ -0,0 +1,257 @@
|
||||
import utils
|
||||
from __builtins__ import *
|
||||
|
||||
spawn_dirs = []
|
||||
spawn_index = [0]
|
||||
spawned_branches = []
|
||||
treasure_found = [0]
|
||||
gold_start = [0]
|
||||
|
||||
def pop_spawn_dir():
|
||||
if spawn_index[0] >= len(spawn_dirs):
|
||||
return None
|
||||
direction = spawn_dirs[spawn_index[0]]
|
||||
spawn_index[0] = spawn_index[0] + 1
|
||||
return direction
|
||||
|
||||
def is_spawned_at(vx, vy, direction):
|
||||
for i in range(len(spawned_branches)):
|
||||
entry = spawned_branches[i]
|
||||
if entry[0] == vx and entry[1] == vy and entry[2] == direction:
|
||||
return True
|
||||
return False
|
||||
|
||||
# Plant a full maze.
|
||||
#
|
||||
# Parameters:
|
||||
# dimensions (tuple): The dimensions of the maze. If not set, default to the maximum size.
|
||||
def place(dimensions=None):
|
||||
if dimensions == None:
|
||||
dimensions = get_world_size()
|
||||
|
||||
plant(Entities.Bush)
|
||||
substance = dimensions * 2**(num_unlocked(Unlocks.Mazes) - 1)
|
||||
use_item(Items.Weird_Substance, substance)
|
||||
|
||||
def solve(dimensions=None):
|
||||
if dimensions == None:
|
||||
dimensions = get_world_size()
|
||||
|
||||
treasure_found[0] = 0
|
||||
gold_start[0] = num_items(Items.Gold)
|
||||
spawn_index[0] = len(spawn_dirs)
|
||||
|
||||
grid_size = get_world_size()
|
||||
|
||||
directions = [North, East, South, West]
|
||||
|
||||
def next_pos(x, y, direction):
|
||||
if direction == North:
|
||||
return x, (y + 1) % grid_size
|
||||
if direction == South:
|
||||
return x, (y - 1) % grid_size
|
||||
if direction == East:
|
||||
return (x + 1) % grid_size, y
|
||||
return (x - 1) % grid_size, y
|
||||
|
||||
def direction_between(x, y, nx, ny):
|
||||
if (x + 1) % grid_size == nx and y == ny:
|
||||
return East
|
||||
if (x - 1) % grid_size == nx and y == ny:
|
||||
return West
|
||||
if x == nx and (y + 1) % grid_size == ny:
|
||||
return North
|
||||
return South
|
||||
|
||||
visited = []
|
||||
x = get_pos_x()
|
||||
y = get_pos_y()
|
||||
visited.append([x, y])
|
||||
|
||||
def is_visited(vx, vy):
|
||||
for i in range(len(visited)):
|
||||
if visited[i][0] == vx and visited[i][1] == vy:
|
||||
return True
|
||||
return False
|
||||
|
||||
stack = [[x, y, 0]]
|
||||
|
||||
while len(stack) > 0:
|
||||
if treasure_found[0] or num_items(Items.Gold) > gold_start[0]:
|
||||
treasure_found[0] = 1
|
||||
return
|
||||
|
||||
current = stack[-1]
|
||||
x = current[0]
|
||||
y = current[1]
|
||||
next_dir_index = current[2]
|
||||
|
||||
if get_entity_type() == Entities.Treasure and can_harvest():
|
||||
harvest()
|
||||
treasure_found[0] = 1
|
||||
return
|
||||
|
||||
candidates = []
|
||||
for i in range(len(directions)):
|
||||
direction = directions[i]
|
||||
if can_move(direction):
|
||||
next_xy = next_pos(x, y, direction)
|
||||
nx = next_xy[0]
|
||||
ny = next_xy[1]
|
||||
if not is_visited(nx, ny):
|
||||
candidates.append(direction)
|
||||
|
||||
if len(candidates) > 1 and num_drones() < max_drones():
|
||||
for i in range(1, len(candidates)):
|
||||
candidate = candidates[i]
|
||||
if not is_spawned_at(x, y, candidate):
|
||||
spawned_branches.append([x, y, candidate])
|
||||
spawn_dirs.append(candidate)
|
||||
spawn_drone(maze_worker)
|
||||
next_xy = next_pos(x, y, candidate)
|
||||
visited.append([next_xy[0], next_xy[1]])
|
||||
break
|
||||
|
||||
moved = False
|
||||
while next_dir_index < len(directions):
|
||||
direction = directions[next_dir_index]
|
||||
stack[-1][2] = next_dir_index + 1
|
||||
if can_move(direction):
|
||||
next_xy = next_pos(x, y, direction)
|
||||
nx = next_xy[0]
|
||||
ny = next_xy[1]
|
||||
if not is_visited(nx, ny):
|
||||
move(direction)
|
||||
visited.append([nx, ny])
|
||||
stack.append([nx, ny, 0])
|
||||
moved = True
|
||||
break
|
||||
next_dir_index = stack[-1][2]
|
||||
|
||||
if moved:
|
||||
continue
|
||||
|
||||
if len(stack) == 1:
|
||||
return
|
||||
|
||||
prev = stack[-2]
|
||||
prev_x = prev[0]
|
||||
prev_y = prev[1]
|
||||
back_dir = direction_between(x, y, prev_x, prev_y)
|
||||
move(back_dir)
|
||||
stack.pop()
|
||||
|
||||
def maze_worker():
|
||||
start_x = get_pos_x()
|
||||
start_y = get_pos_y()
|
||||
|
||||
grid_size = get_world_size()
|
||||
directions = [North, East, South, West]
|
||||
|
||||
def next_pos(x, y, direction):
|
||||
if direction == North:
|
||||
return x, (y + 1) % grid_size
|
||||
if direction == South:
|
||||
return x, (y - 1) % grid_size
|
||||
if direction == East:
|
||||
return (x + 1) % grid_size, y
|
||||
return (x - 1) % grid_size, y
|
||||
|
||||
def direction_between(x, y, nx, ny):
|
||||
if (x + 1) % grid_size == nx and y == ny:
|
||||
return East
|
||||
if (x - 1) % grid_size == nx and y == ny:
|
||||
return West
|
||||
if x == nx and (y + 1) % grid_size == ny:
|
||||
return North
|
||||
return South
|
||||
|
||||
visited = []
|
||||
visited.append([start_x, start_y])
|
||||
|
||||
def is_visited(vx, vy):
|
||||
for i in range(len(visited)):
|
||||
if visited[i][0] == vx and visited[i][1] == vy:
|
||||
return True
|
||||
return False
|
||||
|
||||
first_dir = pop_spawn_dir()
|
||||
if not first_dir:
|
||||
return
|
||||
if not can_move(first_dir):
|
||||
return
|
||||
|
||||
next_xy = next_pos(start_x, start_y, first_dir)
|
||||
move(first_dir)
|
||||
visited.append([next_xy[0], next_xy[1]])
|
||||
stack = [[next_xy[0], next_xy[1], 0]]
|
||||
|
||||
while len(stack) > 0:
|
||||
if treasure_found[0] or num_items(Items.Gold) > gold_start[0]:
|
||||
treasure_found[0] = 1
|
||||
return
|
||||
|
||||
current = stack[-1]
|
||||
x = current[0]
|
||||
y = current[1]
|
||||
next_dir_index = current[2]
|
||||
|
||||
if get_entity_type() == Entities.Treasure and can_harvest():
|
||||
harvest()
|
||||
treasure_found[0] = 1
|
||||
return
|
||||
|
||||
candidates = []
|
||||
for i in range(len(directions)):
|
||||
direction = directions[i]
|
||||
if can_move(direction):
|
||||
next_xy = next_pos(x, y, direction)
|
||||
nx = next_xy[0]
|
||||
ny = next_xy[1]
|
||||
if not is_visited(nx, ny):
|
||||
candidates.append(direction)
|
||||
|
||||
if len(candidates) > 1 and num_drones() < max_drones():
|
||||
for i in range(1, len(candidates)):
|
||||
candidate = candidates[i]
|
||||
if not is_spawned_at(x, y, candidate):
|
||||
spawned_branches.append([x, y, candidate])
|
||||
spawn_dirs.append(candidate)
|
||||
spawn_drone(maze_worker)
|
||||
next_xy = next_pos(x, y, candidate)
|
||||
visited.append([next_xy[0], next_xy[1]])
|
||||
break
|
||||
|
||||
moved = False
|
||||
while next_dir_index < len(directions):
|
||||
direction = directions[next_dir_index]
|
||||
stack[-1][2] = next_dir_index + 1
|
||||
if can_move(direction):
|
||||
next_xy = next_pos(x, y, direction)
|
||||
nx = next_xy[0]
|
||||
ny = next_xy[1]
|
||||
if not is_visited(nx, ny):
|
||||
move(direction)
|
||||
visited.append([nx, ny])
|
||||
stack.append([nx, ny, 0])
|
||||
moved = True
|
||||
break
|
||||
next_dir_index = stack[-1][2]
|
||||
|
||||
if moved:
|
||||
continue
|
||||
|
||||
prev_x = start_x
|
||||
prev_y = start_y
|
||||
if len(stack) > 1:
|
||||
prev = stack[-2]
|
||||
prev_x = prev[0]
|
||||
prev_y = prev[1]
|
||||
|
||||
back_dir = direction_between(x, y, prev_x, prev_y)
|
||||
move(back_dir)
|
||||
stack.pop()
|
||||
|
||||
if len(stack) == 0:
|
||||
if get_pos_x() == start_x and get_pos_y() == start_y:
|
||||
return
|
||||
27
utils.py
27
utils.py
@@ -3,15 +3,26 @@ from __builtins__ import *
|
||||
world_size = get_world_size()
|
||||
|
||||
def move_to(x, y):
|
||||
while x > get_pos_x():
|
||||
move(East)
|
||||
while x < get_pos_x():
|
||||
move(West)
|
||||
cx = get_pos_x()
|
||||
cy = get_pos_y()
|
||||
|
||||
while y > get_pos_y():
|
||||
move(North)
|
||||
while y < get_pos_y():
|
||||
move(South)
|
||||
east_steps = (x - cx) % world_size
|
||||
west_steps = (cx - x) % world_size
|
||||
if east_steps <= west_steps:
|
||||
for _ in range(east_steps):
|
||||
move(East)
|
||||
else:
|
||||
for _ in range(west_steps):
|
||||
move(West)
|
||||
|
||||
north_steps = (y - cy) % world_size
|
||||
south_steps = (cy - y) % world_size
|
||||
if north_steps <= south_steps:
|
||||
for _ in range(north_steps):
|
||||
move(North)
|
||||
else:
|
||||
for _ in range(south_steps):
|
||||
move(South)
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user