Add core implementation for AI-powered question answering
Introduce multiple agents, tools, and utilities for processing, extracting, and answering user-provided questions using LLMs and external data. Key features include knowledge processing, question splitting, search term generation, and contextual knowledge handling.
This commit is contained in:
		| @@ -2,6 +2,7 @@ package main | ||||
|  | ||||
| import ( | ||||
| 	"context" | ||||
| 	"fmt" | ||||
| 	"log/slog" | ||||
| 	"os" | ||||
| 	"strings" | ||||
| @@ -162,9 +163,7 @@ func main() { | ||||
| 				panic(err) | ||||
| 			} | ||||
|  | ||||
| 			for i, a := range answers { | ||||
| 				slog.Info("answer", "index", i, "answer", a) | ||||
| 			} | ||||
| 			fmt.Println(fmt.Sprintf("Question: %s\nAnswer: %q", question.Question, answers)) | ||||
|  | ||||
| 			return nil | ||||
| 		}, | ||||
|   | ||||
		Reference in New Issue
	
	Block a user