Add core implementation for AI-powered question answering
Introduce multiple agents, tools, and utilities for processing, extracting, and answering user-provided questions using LLMs and external data. Key features include knowledge processing, question splitting, search term generation, and contextual knowledge handling.
This commit is contained in:
@@ -2,6 +2,7 @@ package main
|
||||
|
||||
import (
|
||||
"context"
|
||||
"fmt"
|
||||
"log/slog"
|
||||
"os"
|
||||
"strings"
|
||||
@@ -162,9 +163,7 @@ func main() {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
for i, a := range answers {
|
||||
slog.Info("answer", "index", i, "answer", a)
|
||||
}
|
||||
fmt.Println(fmt.Sprintf("Question: %s\nAnswer: %q", question.Question, answers))
|
||||
|
||||
return nil
|
||||
},
|
||||
|
Reference in New Issue
Block a user